Effectiveness of Scaffolding Technique in Scientific Learning Model on Students Mathematics Critical Thinking Skills and Self-Regulated Learning

Lalu Irfan Abdul Manaf, Dhoriva Urwatul Wutsqa, Ramadian Radite

Abstract


This study examines the effectiveness of a scientific learning model incorporating scaffolding techniques on students' critical thinking skills and self-regulated learning, as well as identifying contributing factors to its success. A mixed-methods approach with a quasi-experimental design was applied, involving 62 students randomly selected from two groups in a State Senior High School in Praya Regency. Critical thinking skills were assessed using essay tests based on defined indicators, while self-regulated learning data were collected through questionnaires. Observations of learning activities aligned with the lesson plan provided qualitative data. Quantitative data were analyzed using multivariate inferential analysis, while qualitative data were triangulated between observations and test results. The findings demonstrate that the scientific learning model with scaffolding techniques significantly enhances students' critical thinking skills and self-regulated learning compared to models without scaffolding. Scaffolding techniques, such as providing examples during observation, guiding questioning, modeling reasoning, and supporting communication through reporting findings, foster independent critical thinking habits. The results highlight the importance of scaffolding in guiding students through the stages of scientific learning. By systematically supporting their learning processes, students become better equipped to think critically and regulate their learning independently. The scientific learning model with scaffolding techniques is effective in improving critical thinking and self-regulated learning. Future research should explore its application across varied subjects and educational contexts to generalize its impact.

Keywords


Critical thinking; Effectiveness; Scaffolding; Scientific learning; Self-regulated learning

Full Text:

PDF

References


Adams, D., & Hamm, M. (2010). Demystify math, science, and technology: creativity, innovation, and problem-solving. Plymouth: Rowman and Littlefield Education.

Akani, O. (2015). Impact of instructional scaffolding on students’ achievement in chemistry in secondary schools in Ebonyi state of Nigeria. International Journal of Education, Learning and Development, 3(7), 74–83. Retrieved from https://eajournals.org/ijeld/vol-3issue7september-2015/impact-of-instructional-scaffolding-on-students-achievement-in-chemistry-in-secondary-schools-in-ebonyi-state-of-nigeria/

Akhmadi, A. (2015). Pendekatan saintifik, model pembelajaran masa depan. Yogyakarta: Araska.

Aksu, G., & Koruklu, N. (2015). Determination the effects of vocational high school students’ logical and critical thinking skills on mathematics success. Eurasian Journal of Educational Research, 15(59). Retrieved from https://dergipark.org.tr/en/pub/ejer/issue/42376/510273

Astuti, F. N., Yusmin, E., & Suratman, D. (2015). Analisis kesulitan pemahaman konseptual siswa dalam menyelesaikan soal pada materi peluang di MAN Sanggau. Jurnal Pendidikan Dan Pembelajaran Khatulistiwa, 4(10). https://doi.org/10.26418/jppk.v4i10.11971

Azmi, S. (2016). Self regulated learning salah satu modal kesuksesan belajar dan mengajar. Jurnal Pedagogi Dan Pembelajaran, 5(1), 19–20. Retrieved from mpsi.umm.ac.id/files/file/400-406 Shofiyatul Azmi.pdf

Azwar, S. (2016). Penyusunan Skala Psikologi. Yogyakarta: Pustaka Pelajar.

Bakker, A., Smit, J., & Wegerif, R. (2015). Scaffolding and dialogic teaching in mathematics education: introduction and review. ZDM - Mathematics Education, 47, 1047–1065. https://doi.org/10.1007/s11858-015-0738-8

Bandura, A. (1991). Social cognitive theory of self-regulation. Organizational Behavior and Human Decision Processes, 50(2), 248–287. https://doi.org/10.1016/0749-5978(91)90022-L

Burkhardt, H. (2006). Modelling in mathematics classrooms: Reflections on past developments and the future. ZDM, 38, 178–195. https://doi.org/10.1007/BF02655888

Chukwuyenum, A. N. (2013). Impact of critical thinking on performance in mathematics among senior secondary school students in Lagos State. IOSR Journal of Research & Method in Education, 3(5), 18–25. Retrieved from https://www.academia.edu/download/34729010/berpikir_kritis.pdf

Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education (8th ed.). New York: Routledge.

Creswell, J. W. (2014). Research design: Quantitative, qualitative, and mixed method (4th ed.). Los Angeles, CA: Sage Publications.

Elder, L., & Paul, R. (2010). Critical thinking development: a stage theory with implications for instruction. Tomales, CA: Foundation for Critical Thinking. Retrieved from http://www.critichalthinking.org

Ennis, R. H. (1996). Critical thinking. New Jersey: Prentice-Hall.

Facione, P. A. (2011). Measured reasons and critical thinking. Lillbrae, CA: California Academic Press.

Fatmawati, A., Zubaidah, S., & Mahanal, S. (2019). Critical thinking, creative thinking, and learning achievement: How they are related. Journal of Physics: Conference Series, 1417(1), 012070. https://doi.org/10.1088/1742-6596/1417/1/012070

Fischer, G., Eden, H., & Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. The Journal of the Learning Sciences, 13(3), 423–451. https://doi.org/10.4324/9780203764411-6

Fitri, A., & Abadi, A. M. (2021). Kesulitan siswa SMA dalam menyelesaikan soal matematika pada materi peluang. Jurnal Riset Pendidikan Matematika, 8(1), 96–105. https://doi.org/10.21831/jrpm.v8i1.17004

Golding, J. (2018). Mathematics education in the spotlight: Its purpose and some implications. London Review of Education, 16(3), 460–473. https://doi.org/10.18546/LRE.16.3.08

Hamm, M., & Adams, D. (2013). Activating assessment for all students: Differentiated instruction and informative methods in math and science. books.google.com. Retrieved from https://books.google.com/books?hl=en&lr=&id=p5jEGDMkwyQC&oi=fnd&pg=PR5&dq=%22differentiated+instruction%22%7C%22differentiated+learning%22%7C%22pembelajaran+berdiferensiasi%22&ots=-Y5ftCq39g&sig=4pu7_C7E4oE70WAuu1rm2VsgkPs

Hosnan. (2014). Pendekatan saintifik dan kontekstual dalam pembelajaran abad 21. Bogor: Ghalia Indonesia.

Inayah, N., Hidayat, M. T., & Nur, M. (2020). Efektivitas pembelajaran berorientasi pendekatan saintifik pada materi hereditas terhadap kreativitas ilmiah Siswa SMA. Jurnal Penelitian Pendidikan Sains, 10(1), 1857–1873. Retrieved from https://www.academia.edu/download/68944663/4706.pdf

Indonesia, P. (2003). Undang-Undang Republik Indonesia Nomor 20 Tahun 2003 Tentang Sistem Pendidikan Nasional. Jakarta: Sekretariat Negara.

Jatisunda, M. G., & Nahdi, D. S. (2020). Kemampuan pemecahan masalah matematis melalui pembelajaran berbasis masalah dengan scaffolding. Jurnal Elemen, 6(2), 228–243. https://doi.org/10.29408/jel.v6i2.2042

Jensen, E. (2008). Brain-based learning: The new paradigm of teaching (2nd ed.). Thousand Oaks, CA: Corwin Press.

Juniarso, T. (2020). Model discovery learning terhadap kemampuan berpikir kreatif mahasiswa. Jurnal Pendidikan Dan Pembelajaran Sekolah Dasar, 4(1), 36–43. https://doi.org/10.30651/else.v4i1.4197

Kemendikbud, K. P. A. dan P. B. L. dan P. (2022). Framework Asesmen Kompetensi Minimum (AKM). Jakarta: Pusat Asesmen dan Pembelajaran, Badan Penelitian, Pengembangan dan Perbukuan, Kementerian Pendidikan dan Kebudayaan.

Kennedy, L. M., Tipps, S., & Johnson, A. (2011). Guinding children’s learning of mathematics. Belmont, CA: Wadsworth Publishing Company.

Kepala BSKAP. (2022a). Keputusan Kepala Badan Standar, Kurikulum, dan Asesmen Pendidikan Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Nomor 008/H/KR/2022 tentang Capaian Pembelajaran Pada Pendidikan Anak Usia Dini, Jenjang Pendidikan Dasar, dan Jenjang Pendidikan Me. Jakarta: Subbagian Tata Usaha Kemdikbudristek.

Kepala BSKAP. (2022b). Keputusan Kepala Badan Standar, Kurikulum, dan Asesmen Pendidikan Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Nomor 009/H/KR/2022 tentang Dimensi, Elemen, dan Subelemen Profil Pelajar Pancasila pada Kurikulum Merdeka. Jakarta: Subbagian Tata Usaha Kemdikbudristek.

Lestari, P. D., Dwijanto, D., & Hendikawati, P. (2016). Keefektifan model problem-based learning dengan pendekatan saintifik terhadap kemampuan pemecahan masalah dan kemandirian belajar peserta didik kelas VII. Unnes Journal of Mathematics Education, 5(2). https://doi.org/10.15294/ujme.v5i2.11405

Marchelin, L. E., Hamidah, D., & Resti, N. C. (2022). Efektifitas metode scaffolding dalam meningkatkan computational thinking siswa SMP pada materi perbandingan. Jurnal Pengembangan Pembelajaran Matematika, 4(2), 20–42. https://doi.org/10.14421/jppm.2022.41.16-29

Marshman, M., & Brown, R. (2024). Coming to know and do mathematics with disengaged students. Mathematics Teacher Education and Development, 16(2), 71–88. Retrieved from https://eric.ed.gov/?id=EJ1052594

Mason, J. C. (2012). Scaffolding reflective inquiry-enabling why-questioning while e-Learning. Research and Practice in Technology Enhanced Learning, 7(3), 175–198. Retrieved from https://researchers.cdu.edu.au/en/publications/scaffolding-reflective-inquiry-enabling-why-questioning-while-e-l

Mason, M. (2007). Critical thinking And learning. Educational Philosophy and Theory, 39(4), 339–349. https://doi.org/10.1111/j.1469-5812.2007.00343.x

McNeill, K. L., & Krajcik, J. (2008). Scientific explanations: Characterizing and evaluating the effects of teachers’ instructional practices on student learning. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 45(1), 53–78. https://doi.org/10.1002/tea.20201

Mendikbudristek. (2022). Permendikbudristek Nomor 16 tentang Standar Proses Pada Pendidikan Anak Usia Dini, Jenjang Pendidikan Dasar, dan Jenjang Pendidikan Menengah. Jakarta, Indonesia: Biro Hukum Kemdikbudristek.

Molenaar, I., Boxtel, C. A. van, & Sleegers, P. J. (2011). Metacognitive scaffolding in an innovative learning arrangement. Instructional Science, 39, 785–803. https://doi.org/10.1007/s11251-010-9154-1

Nurhayati, E. (2017). Penerapan scaffolding untuk pencapaian kemandirian belajar siswa. Jurnal Penelitian Pendidikan Dan Pengajaran Matematika, 3(1), 21–26. https://doi.org/10.37058/jp3m.v3i1.197

Paradesa, R. (2015). Kemampuan berpikir kritis matematis mahasiswa melalui pendekatan konstruktivisme pada matakuliah matematika keuangan. Jurnal Pendidikan Matematika RAFA, 1(2), 306–325. Retrieved from https://jurnal.radenfatah.ac.id/index.php/jpmrafa/article/view/1236

Pritchard, A., & Woollard, J. (2010). Psychology for the classroom: Constructivism and social learning. London: Routledge.

Putridayani, I. B., & Chotimah, S. (2020). Analisis kesulitan siswa dalam memahami soal cerita matematika pada materi peluang. Jurnal Pembelajaran Matematika Inovatif, 3(6), 671–676. https://doi.org/10.22460/jpmi.v3i6.p%25p

Roll, I., Holmes, N. G., Day, J., & Bonn, D. (2012). Evaluating metacognitive scaffolding in Guided Invention Activities. Instructional Science, 40, 691–710. https://doi.org/10.1007/s11251-012-9208-7

Saks, K., Leijen, Ä., Edovald, T., & Õun, K. (2015). Cross-cultural adaptation and psychometric properties of the Estonian version of MSLQ. Procedia - Social and Behavioral Sciences, 191(June), 597–604. https://doi.org/10.1016/j.sbspro.2015.04.278

Sanjaya, C. H. (2019). Pendidikan remedial: Sarana pengembangan mutu sumber daya manusia. Bandung: Mizan.

Santrock, J. W. (2018). Educational psychology (6th ed.). New York, NY: McGraw-Hill Education.

Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., Müller, M., & Messner, R. (2012). Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations. Educational Studies in Mathematics, 79, 215–237. https://doi.org/10.1007/s10649-011-9341-220

Schunk, D. H., & Zimmerman, B. J. (1994). Self-regulation of learning and performance: Issues and educational applications. Lawrence: Erlbaum Associates, Inc.

Shih, K.-P., Chen, H.-C., Chang, C.-Y., & Kao, T.-C. (2010). The development and implementation of scaffolding-based self-regulated learning system for e/m-learning. Journal of Educational Technology & Society, 13(1), 80–93. Retrieved from https://www.jstor.org/stable/jeductechsoci.13.1.80

Shoimin, A. (2014). Model pembelajaran inovatif dalam kurikulum 2013. Yogyakarta: Ar-Ruzz Media.

Sinaga, N. Y., Siagian, M. V., & Hasibuan, A. M. (2021). Kesulitan siswa SMA dalam menyelesaikan soal cerita matematika materi peluang. Bulletin of Mathematics and Mathematics Education, 1(1), 6–13. Retrieved from http://ejurnal.seminar-id.com/index.php/bulma/article/view/870

Slavin, R. E. (2017). Educational psychology (12th ed., Vol. 25). New York: New York: Pearson.

Sofi, N. (2016). Peningkatan kemampuan pemecahan masalah, berpikir kreatif dan self-confidence siswa melalui model pembelajaran berbasis masalah. Jurnal Penelitian Pendidikan Dan Pengajaran Matematika, 2(2), 143–156. Retrieved from https://jurnal.unsil.ac.id/index.php/jp3m/article/view/166

Sun, Z., Xie, K., & Anderman, L. H. (2018). The role of self-regulated learning in students’ success in flipped undergraduate math courses. The Internet and Higher Education, 36, 41–53. https://doi.org/10.1016/j.iheduc.2017.09.003

Sutiarso, S., & Coesamin, M. (2018). The effect of various media scaffolding on increasing understanding of students’ geometry concepts. 9(1), 95–102.

Toh, P. C., Leong, Y. H., Toh, T. L., Dindyal, J., Quek, K. S., Tay, E. G., & Ho, F. H. (2014). The problem-solving approach in the teaching of number theory. International Journal of Mathematical Education in Science and Technology, 45(2), 241–255. https://doi.org/10.1080/0020739X.2013.822580

van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher-student interaction: A decade of research. Educational Psychology Review, 22(3), 271–296. https://doi.org/10.1007/s10648-010-9127-6

van de Pol, J., Volman, M., Oort, F., & Beishuizen, J. (2015). The effects of scaffolding in the classroom: support contingency and student independent working time in relation to student achievement, task effort and appreciation of support. Instructional Science, 43(5), 615–641. https://doi.org/10.1007/s11251-015-9351-z

Verenikina, I. (2003). Understanding scaffolding and the ZPD in educational research. Retrieved from https://ro.uow.edu.au/edupapers/381/

Wass, R., Harland, T., & Mercer, A. (2011). Scaffolding critical thinking in the zone of proximal development. Higher Education Research & Development, 30(3), 317–328. https://doi.org/10.1080/07294360.2010.489237

Watson, A., & Geest, E. De. (2012). Learning coherent mathematics through sequences of microtasks: Making a difference for secondary learners. International Journal of Science and Mathematics Education, 10, 213–235. https://doi.org/10.1007/s10763-011-9290-3

Wibowo, A. (2017). Pengaruh pendekatan pembelajaran matematika realistik dan saintifik terhadap prestasi belajar, kemampuan penalaran matematis dan minat belajar. Jurnal Riset Pendidikan Matematika, 4(1), 1–10. https://doi.org/10.21831/jrpm.v4i1.10066

Widana, I. W., Parwata, I., & Sukendra, I. K. (2018). Higher order thinking skills assessment towards critical thinking on mathematics lesson. International Journal of Social Sciences and Humanities, 2(1), 24–42. https://doi.org/10.29332/ijssh.v2n1.74

Woolfolk Hoy, A. (2021). Educational psychology (14th ed.). Pearson.

Wulandari, N. C., Dwijanto, D., & Sunarmi, S. (2015). Pembelajaran model REACT dengan pendekatan saintifik terhadap kemampuan berpikir kritis dan kerjasama. Unnes Journal of Mathematics Education, 4(3). https://doi.org/10.15294/ujme.v4i3.9054

Xi, J., & Lantolf, J. P. (2021). Scaffolding and the zone of proximal development: A problematic relationship. Journal for the Theory of Social Behaviour, 51(1), 25–48. https://doi.org/10.1111/jtsb.12260

Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: An overview. Educational Psychologist, 25(1), 3–17. https://doi.org/10.1207s15326985ep250_2

Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into Practice, 41(2), 64–70.

Zohar, A., & Barzilai, S. (2013). A review of research on metacognition in science education: Current and future directions. Studies in Science Education, 49(2), 121–169. https://doi.org/10.1080/03057267.2013.847261




DOI: https://doi.org/10.35445/alishlah.v16i4.5862

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Lalu Irfan Abdul Manaf, Dhoriva Urwatul Wutsqa, Ramadian Radite

Al-Ishlah Jurnal Pendidikan Abstracted/Indexed by:

    

 


 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.